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Abstract. We calculate deuteron positive and negative radial moments involving any bilinear function of
the deuteron S and D wave functions for renormalized OPE and TPE chiral potentials. The role played
by the strong singularities of the potentials at the origin and the short-distance insensitivity of the results
when the potentials are fully iterated is emphasized as compared to realistic potentials.

PACS. 21.30.Fe Forces in hadronic systems and effective interactions — 11.10.Gh Renormalization —
13.75.Cs Nucleon-nucleon interactions — 21.45.4+v Few-body systems

Chiral dynamics has played an important role in the
theoretical description of low-energy hadronic reactions [1]
and so far is the only known vestige of the underlying
fundamental QCD theory of strong interactions in nu-
clear physics. There is a number of low-energy theorems
based on chiral symmetry which provide a quantitative
and model-independent insight into low-energy processes
involving pions and nucleons, due to the clear scale sepa-
ration between nuclear physics and QCD. For compound
systems which at low energies disclose their composite na-
ture the theoretical description necessarily becomes very
involved and probably dependent on arbitrary assump-
tions. On the contrary, for weakly bound systems such
as the deuterium nucleus one expects important simpli-
fications leading to a more scheme-independent and pos-
sibly systematic description of these systems. This possi-
bility motivated the introduction of Effective Field The-
ory (EFT) approaches [2] for nuclear physics based on
the chiral symmetry of QCD, and the derivation of low-
energy theorems, as, for example, pion-deuteron scatter-
ing [3] (for comprehensive reviews see, e.g., refs. [4-6]). In
many cases most of the information needed for reactions
involving the deuteron can be encoded by simple deuteron
matrix elements.

Guided by earlier work [7,8], we have proposed [9-13]
to renormalize the NN interaction in a non-perturbative
way, highlighting model-independent long-distance corre-
lations among physical observables. In our approach the
long-distance chiral NN One-Pion Exchange (OPE) and
Two-Pion Exchange (TPE) potentials, computed within
perturbation theory in refs. [14-16], are iterated to all or-
ders in the Schrédinger equation very much in the spirit
of the original Weinberg approach [2]. However, some sub-
tleties are found [10,12,17], which impose strong con-
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straints on the admisible short-distance physics based on
orthogonality, uniqueness and finiteness of the results.

In the 3S; — 3D channel, the relative proton-neutron
state for negative energy is described by the coupled equa-
tions

_% + Us(r) . Usa(r) <u> _
Ua(r) -5+ 85 4+U(r)) W
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Here v = v M B, with B the deuteron binding energy and
M the nucleon mass, U(r) = MV (r) are the reduced po-
tentials and u(r) and w(r) are S- and D-wave deuteron re-
duced wave functions, respectively. At long distances they

satisfy,
— Age™ " 3 3 ;
w n [1 + r + W]

where 7 is the asymptotic D/S ratio parameter and Ag
is the asymptotic normalization factor, which is such that
the deuteron wave functions are normalized to unity. For
conventions and numerical values of parameters we use
refs. [11,12] throughout.

In this work we report on the radial moments

Oﬂuzlmwwﬂ%n 3)
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for —3 < n < 2 which appear in many situations of in-
terest, such as the calculation of the matter radius, the
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Fig. 1. The OPE and TPE deuteron wave functions, u (left) and w (right), as a function of the distance (in fm) compared to
the Nijmegen-II wave functions [22]. The asymptotic normalization v — e~ 7" has been adopted and the asymptotic D/S ratio
is taken 1 = 0.0256(4) in the TPE case (for OPE 1 = 0.026333). We use the set IV of chiral couplings (see ref. [12]).

deuteron quadrupole moment and deuteron magnetic mo-
ment for the positive powers, as well as 7d and Kd elastic
scattering and neutral pion photoproduction, vd — 7°d,
in the case of the negative powers.

An important issue is the finiteness of the negative ra-
dial moments, a topic which has been recently discussed
for OPE [11,18,19] and TPE [20]. The remarkable finding
is that chiral potentials [14-16], when fully iterated, have
an increasing number of finite inverse radial moments due
to the near the origin singularities of the potential. They
smoothen the short-distance behaviour of the wave func-
tions and hence improve the convergence of the inverse
radial moments. This is in sharp contrast with pertur-
bative approaches [21], for which the perturbative wave
functions diverge at the origin [11,12]!, or conventional
(regular) phenomenological potentials [22] where the S-
and D-wave short-distance behaviour of the wave func-
tions, u ~ r and w ~ r® respectively, is enough to render
(1/r), and (1/r?), finite, but produce divergent higher
inverse moments. We illustrate the situation below.

At distances much shorter than the pion Compton
wavelength, the OPE potential behaves as

USPE(r) USPE(r) 1 [/ Rs Ry
< ) & (e
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UOFE(r) USPE(r) Req Ra (©6)

r3
with R, = 0, Rsg = 2v2R, Ry = 4R and R =
3923 M/32n f? (= 1.07764 fm). This behaviour of the po-
tential is strong enough to overcome the centrifugal barrier
at short distances, thus modifying the usual short-distance

behaviour of the wave functions, which can schematically
be written as

r\3/4 r
ur) ~ @) ~ (5) £ (F) (7)
where f(r/R) represents some linear combination of
sin (4\/R/r), cos (4\/R/r) and exp (—4v/2/R/r) (for a

! This divergency holds for perturbations both on boundary
conditions or on distorded (fully iterated) OPE waves.

complete analysis, see ref. [11]). The elimination of the di-
verging exponential fixes nopr = 0.0263. From this short-
distance behaviour of the wave functions, one finds that
the (1/r), and (1/r?), moments are finite for the OPE
potential, while (1/r®), and higher moments diverge, as
it would happen for a regular potential.

The short-distance behaviour of the TPE (NNLO) has
been exploited in ref. [12]. The potential at short distances
behaves as [14-16]

(v}PE(r) ULPE<r>> L (33 R‘:d> | -

U;FdPE(r) U(;FPE(T) R‘sld R§
where
34>
4 A 2 - ~
= 24 (4 24¢3 —
(RS) 128f47f2 ( 3gA + C3 804)5
3v243
4 _ A 2 ~
(Rsq)* = ~T2871x2 (=44 3974 — 16¢4),
99%

(Ra)* = 32f747T2(_1 + 297 + 263 — 2¢4), 9)

and ¢; = Mc¢; are the low-energy chiral couplings appear-
ing in wN scattering. As in the OPE case, this potential
is strong enough at short distances to modify the short-
distance behaviour of the wave function, which now reads

u(r) ~w(r) ~ Cy (r/Ry)*? fr (r/Ry)

+C- (r/R) f-(r/R2). (10)
where RY and R? are the eigenvalues of the matrix in
eq. (8), and fi(r/R4) represents a linear combination of
sin (R%/2r?) and cos (R2 /2r?) leaving nrpE as a free pa-
rameter [12,20]. From this short-distance behaviour, the
(1/r)u, (1/r%),, and (1/r?), radial moments are finite for
the TPE potential, while higher moments diverge (al-
though they would become finite for higher-order poten-
tials).
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Table 1. Deuteron radial moments (in units of powers of fm). We consider the OPE and TPE potentials; in the case of the
OPE potential we have taken g.nyn = 13.08 (i.e., ga = 1.29, OPE) and g4 = 1.26 (OPE"), while in the TPE case we show the
results corresponding to the four set of chiral couplings considered along our previous works [12,20]. In the OPE case the error
is estimated by varying the semiclassical matching radius [11,20] in the 0.1-0.2 fm range, while in the TPE case the error comes
from the experimental uncertainty of the D/S ratio, n = 0.0256(4). TPE Sets I, II, IT and IV refer to the chiral parameters, ci,
cs and ¢4 of refs. [23,16,24] and [25], respectively. NijmII and Reid93 are calculated from ref. [22] or taken from ref. [26].

Short OPE OPE* TPE-Setl | TPE-SetIl | TPE-SetIII | TPE-SetIV | NijmII Reid93
~ (fm™') | Input Input Input Input Input Input Input 0.231605 | 0.231605
n 0.0 0.026333 0.025547 Input Input Input Input 0.02521 0.02514
(r*), | 9.3213 | 14.582(6) | 14.424(6) | 15.60(9) | 15.61(11) 15.3(3) 15.09(13) | 15.129 | 15.147
() 0.0 | 0.3849(2) |0.36371(15) | 0.37(3) 0.38(2) 0.37(2) 0.38(2) 0.3438 | 0.3429
(r®) 0.0 2.0883(9) | 2.0144(8) 2.14(4) 2.15(3) 2.11(3) 2.09(3) 2.035 2.032
(r'y. | 2.1580 | 3.0400(14) | 3.0185(13) | 3.21(2) 3.20(2) 3.16(2) 3.12(3) 3.138 3.139
(r"Ye 0.0 | 0.14287(6) | 0.13691(6) | 0.134(12) | 0.139(12) | 0.136(12) | 0.146(12) | 0.1204 | 0.1206
(Y 0.0 | 0.5808(3) | 0.5739(2) | 0.586(14) | 0.589(14) | 0.581(15) | 0.584(13) | 0.5594 | 0.5590
(r%, 1.0 | 0.9270(4) | 0.9287(4) | 0.9359) | 0.930(9) | 0.931(10) | 0.918(10) | 0.9436 | 0.9430
(%) 0.0 | 0.07312(3) | 0.07146(2) | 0.065(9) | 0.070(9) | 0.069(10) | 0.081(10) | 0.05635 | 0.05699
(r®uuw 0.0 | 0.23989(11) | 0.23691(10) | 0.222(7) | 0.225(7) 0.225(8) 0.233(7) 0.2166 | 0.2172
(r=1. oo 0.4259(3) | 0.4336(2) | 0.382(5) | 0.377(5) | 0.388(6) 0.384(5) | 0.4160 | 0.4163
(rY | 0.0 |0.052498(5) | 0.05256(3) | 0.042(8) | 0.048(7) | 0.048(10) | 0.063(10) | 0.03419 | 0.03520
(rYuw | 0.0 | 0.14120(7) | 0.14239(3) | 0.112(5) | 0.115(5) 0.117(6) 0.128(6) 0.1153 | 0.1166
(r=2)., o0 0.3464(8) | 0.3582(3) | 0.210(4) | 0.205(4) | 0.220(5) 0.221(3) | 0.2607 | 0.2646
(r~2, | 00 | 00771(2) | 0.0783(3) | 0.038(8) | 0.044(7) | 0.045(12) | 0.064(11) | 0.02613 | 0.02780
(r"Yuw | 0.0 | 0.1551(4) | 0.1589(3) | 0.072(4) | 0.075(4) | 0.079(4) 0.093(6) | 0.08122 | 0.08413
(r73). o o o 0.159(3) 0.155(3) 0.173(4) 0.1851(8) o o
r~e | 0.0 oo oo 0.053(10) | 0.059(9) | 0.066(14) | 0.091(14) | 0.02465 | 0.02783
(r"uw | 0.0 oo oo 0.0626(14) | 0.068(2) | 0.071(2) 0.097(6) | 0.07342 | 0.08064
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moments are tabulated in table 1. As we see, and despite 5. D.R. Phillips, Czech. J. Phys. 52, B49 (2002).
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